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In this paper, we introduce and study a model of Lotka-volterra chemostat food
chain chemostat with periodically varying dilution rate, which contains with predator,
prey, and substrate. We investigate the subsystem with substrate and prey and study the
stability of the periodic solutions, which are the boundary periodic solutions of the sys-
tem. The stability analysis of the boundary periodic solution yields an invasion thre-
shold. By use of standard techniques of bifurcation theory, we prove that above this
threshold there are periodic oscillations in substrate, prey, and predator. Simple cycles
may give way to chaos in a cascade of period-doubling bifurcations. Furthermore, we
numerically simulate a model with sinusoidal dilution rate, by comparing bifurcation
diagrams with different bifurcation parameters, we can see that the system experiences
following process: periodic solution → periodic doubling cascade →chaos.

KEY WORDS: bifurcation, Lotka-volterra functional response, chemostat, periodic
dilution, chaos

1. Introduction and the model

As well known, countless organisms live in seasonally or diurnally forced
environment, in which the populations obtain food, so the effects of this forcing
may be quite profound. There is evidence, for example, the seasonal variation in

∗ Corresponding author.

901

0259-9791/08/0003-0901/0 © 2007 Springer Science+Business Media, LLC



902 G. Pang et al. / Study of Lotka-volterra food chain chemostat

contact rates derives the dynamics of childhood disease epidemics [1], and that
seasonal or diurnal periodicity in competition coefficients can play a pivotal role
in the coexistence of some competitors [2]. A chemostat is a common labora-
tory apparatus used to culture microorganisms. Sterile growth medium enters the
chemostat at a constant rate; the volume within the chemostat is held constant.
In its simplest form, the system approximates conditions for plankton growth
in lakes, where the limiting nutrients such as silica and phosphate are supplied
from streams draining the watershed. Recently many papers studied chemostat
model with variations in the supply of nutrients or the washout. Chemostat with
periodic inputs are studied in [3–7], those with periodic washout rate in [8, 9],
and those with periodic input and washout in [10]. In this paper, we introduce
and study a model of Lotka-volterra type food chain chemostat with periodically
varying dilution rate, we may write

dS

dT
= D(1 + εA(T ))(S0 − S) − µ1

δ1
SH,

dH

dT
= µ1SH − D(1 + εA(T ))H − µ2

δ2
HP,

dP

dT
= µ2HP − D(1 + εA(T ))P,

(1.1)

where is the τ/D-period continuous function, with
∫ τ

D

0
A(t)dt = 0, |A(t)| � 1.

The state variables S, H, and P represent the concentration of limiting substrate,
prey, and predator. D is the dilution rate; µ1 and µ2 are the uptake and preda-
tion constants of the prey and predator; δ1 is the yield of prey per unit mass of
substrate; δ2 is the biomass yield of predator per unit mass of prey; b1, b2 are
half capturing saturation constants of prey and predator. DS0 units of substrate
are added, on average, per unit of time. n ∈ N , N is the set of all non-negative
integers.

There are advantages in analyzing dimensionless equations. We treat the
reciprocal of the dilution rate as natural measure of time:

x ≡ S

S0
, y ≡ H

δ1S0
, z ≡ P

δ1δ2S0
, t ≡ DT.

After some algebra, this yields

dx

dt
= (1 + εa(t))(1 − x) − m1xy,

dy

dt
= m1xy − (1 + εa(t))y − m2yz,

dz

dt
= m2yz − (1 + εa(t))z (1.2)
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with

m1 = µ1S0

D
, m2 = µ2S0

D
, a1 = δ1b1, a2 = δ2b2.

The organizations of the paper are as following. In next section, we inves-
tigate the existence and stability of the periodic solutions of the impulsive sub-
system with substrate and prey. In section 3, we study the locally stability of the
boundary periodic solution of the system and obtain the threshold of the inva-
sion of the predator. By use of standard techniques of bifurcation theory, we
prove that above this threshold there are periodic oscillations in substrate, prey,
and predator. In section 4, Furthermore, we numerically simulate a model with
sinusoidal dilution rate, by comparing bifurcation diagrams with different bifur-
cation parameters, we can see that the system experiences following process: per-
iodic solution → periodic doubling cascade →chaos.

2. Behavior of the substrate bacterium subsystem

In the absence of the protozan predator, system (1.2) reduces to

dx

dt
= (1 + εa(t))(1 − x) − m1xy,

dy

dt
= m1xy − (1 + εa(t))y.

(2.1)

This nonlinear system has simple periodic solutions. For our purpose, we present
these solutions in this sections.

If we add the first and second equations of the system (2.1), we have
d(x+y)

dt
= (1 + εa(t))(1 − x − y). If we take variable changes s = x + y then

the system (2.1) can be rewritten as

ds

dt
= (1 + εa(t))(1 − s). (2.2)

For the system (2.2), we have the following lemma 2.1.

Lemma 2.1. The subsystem (2.2) has a positive periodic solution s̃(t) and for
every solution s(t) of (3.2) we have |s(t) − 1| → 0 as t → ∞.

Lemma 2.2. Let (x(t), y(t)) be any solution of system (2.1) with initial condition
x(0) � 0, y(0) > 0, then limt→∞ |x(t) + y(t) − 1| = 0.

The lemma 2.2 says that the periodic solution s̃(t) is uniquely invariant
manifold of the system (2.1).

Theorem 2.1. For the system (2.1), we have that:
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(1) If m1 < 1, then the system (2.1) has a unique globally asymptotically
stable boundary τ−periodic solution (xe(t), ye(t)), where

xe(t) = 1, ye(t) = 0 (2.3)

(2) If m1 > 1, then the system (2.1) has a unique globally asymptotically
stable positive τ−periodic solution (xs(t), ys(t)) and the τ−periodic
solution (xe(t), ye(t)) is unstable. And we have

1
τ

∫ τ

0
ys(l)dl = m1 − 1

m1
.

Proof.

(1) If m1 < 1, it is obvious that

y(t) � y(0)e(m1−1)t exp
(∫ t

0
p1(l)dl

)
, (2.4)

where p1(t) = m1s̃(t) − ∫ τ

0 m1s̃(l)dl; note that
∫ τ

0 p(l)dl = 0 and hence
that p1(t) is τ -periodic continuous function. Thus, for 1

τ

∫ τ

0 m1s̃(l)dl −
1 < 0 we find that y(t) tends exponentially to zero as t → +∞. Consi-
der the system (2.2), we have x(t) = s(t) − y(t). By lemma 2.2, we have
limt→∞ |x(t) − s̃(t)| = 0.

(2) Set m1 > 1. By lemma 2.1, we can consider the system (2.1) in its stable
invariant manifold s̃(t), that is

dy

dt
= (m1 − 1 − εa(t))y − m1y

2. (2.5)

The equation (2.5) has a globally asymptotically stable τ -period solution

ys(t) =
(

e(m1−1)τ − 1
)(∫ t+τ

t

m1 exp
(

−
∫ t

s

((m1 − 1 − εa(l)))dl

)
ds

)−1

and 1
τ

∫ τ

0 ys(t)dt = m1−1
m1

.

We denote positive τ -periodic solution

xs(t) = 1 − ys(t).

For the system (2.1), by lemma 2.2 we obtain that for any solution (x(t), y(t))

with initial condition x(0) � 0, y(0) > 0, |x − xs | → 0, |y − ys | → 0 as t → ∞.
We complete the proof. �
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3. The bifurcation of the system

In order to investigate the invasion of the predator of system (1.2), we add
the first, second, and third equations of it and take variable changes s = x+y+z,
by lemma 2.1, the following lemma is obvious.

Lemma 3.1. Let (x(t), y(t), z(t)) be any solution of system (1.2) with X(0) > 0,
then

limt→∞ |x(t) + y(t) + z(t) − 1| = 0. (3.1)

The lemma 3.1 says that the periodic solution s̃(t) is an invariant manifold
of the system (1.2).

Theorem 3.1. Let (x(t), y(t), z(t)) be any solution of system (1.2) with X(0) > 0.

(1) If m1 > 1 and m2 < m∗
2 := m1

m1−1 , then the system (1.2) has a unique glo-
bally asymptotically stable boundary τ -periodic solution (xs(t), ys(t), 0)

is globally asymptotical stable.

(2) If m1 > 1 and m2 > m∗
2 := m1

m1−1 , then the periodic boundary solution
(xs(t), ys(t), 0) of the system (1.2) is unstable.

Proof. The local stability of periodic solution (xs(t), ys(t), 0) may be determi-
ned by considering the behavior of small amplitude perturbations of the solu-
tion. Define

x(t) = u(t) + xs(t), y(t) = v(t) + ys(t), z(t) = w(t)

there may be written
⎛
⎝ u(t)

v(t)

w(t)

⎞
⎠ = Φ(t)

⎛
⎝ u(0)

v(0)

w(0)

⎞
⎠ , 0 � t � τ,

where Φ(t) satisfies

dΦ

dt
=

⎛
⎝−1 − δa − m1ys −m1xs 0

m1ys m1xs − 1 − δa −m2ys

0 0 m2ys − 1 − δa

⎞
⎠ Φ(t)

and Φ(0) = I , the identity matrix. Hence the fundamental solution matrix is

Φ(τ ) =
⎛
⎝φ11(τ ) φ12(τ ) ∗

φ21(τ ) φ22(τ ) ∗∗
0 0 exp(

∫ τ

0 (m2ys(l) − 1)dl)

⎞
⎠ . (3.2)
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It is no need to give the exact form of (∗) and (∗∗) as it is not requi-
red in the analysis that follows. The eigenvalues of the matrix Φ(τ ) are
µ3= exp(

∫ τ

0 (m2ys(l) − 1)dl) and the eigenvalues µ1, µ2 of the following matrix

(
φ11(τ ) φ12(τ )

φ21(τ ) φ22(τ )

)
. (3.3)

The µ1, µ2 are also the multipliers the locally linearizing system of the system
(2.1) provided with 1

τ

∫ τ

0 m1s̃(l)dl > 1 at the asymptotically stable periodic solu-
tion (xs(t), ys(t)), according to theorem 2.1, we have that µ1 < 1, µ2 < 1.

If m1 > 1 and 1
τ

∫ τ

0 m2ys(l)dl < 1, the µ3 = exp(
∫ τ

0 (m2ys(l) − 1)dl) < 1, the
boundary periodic solution (xs(t), ys(t), 0) of the system (1.2) is locally asymp-
totically stable. We have that z(t) � z(0) exp(

∫ t

0 (m2ys(l) − 1)dl), hence we obtain
that for any solution (x(t), y(t), z(t)) with X(0) > 0, z(t) → 0 as t → ∞. By
limt→∞ |x(t)+y(t)+z(t)− s̃(t)| = 0, we have limt→∞ |x(t)+y(t)− s̃(t)| = 0. Now
using theorem 2.1, we have limt→∞ |y(t)−ys(t)| = 0 and limt→∞ |x(t)−xs(t)| =
0.

If m1 > 1 and 1
τ

∫ τ

0 m2ys(l)dl > 1, the µ3 = exp(
∫ τ

0 (m2ys(l) − 1)dl) > 1,
the boundary periodic solution (xs(t), ys(t), 0) of the system (1.2) is unstable. We
complete the proof. �

Let B denote the Banach space of continuous, τ -periodic functions N:[0, τ ]
→ R2. In the set B introduce the norm |N |0 = sup0�t�τ |N(t)| with which B

becomes a Banach space with the uniform convergence topology.
For convenience, we introduce the following lemmas 3.2 and 3.3 [11].

Lemma 3.2. [11]. Suppose aij ∈ B. (a) If
∫ τ

0 a22(s)ds �= 0,
∫ τ

0 a11(s)ds �= 0, then
the linear homogenous system

dy1
dt

= a11y1 + a12y2,

dy2
dt

= a22y2

(3.4)

has no nontrivial solution in B × B. In this case, the nonhomogeneous system

dx1
dt

= a11x1 + a12x2 + f1,

dx2
dt

= a22x2 + f2

(3.5)

has, for every (f1, f2) ∈ B × B, a unique solution (x1, x2) ∈ B × B and the ope-
rator L: B × B → B × B defined by (x1, x2) = L(f1, f2) is linear and compact.
If we define that x′

2 = a22x2 + f2 has a unique solution x2 ∈ B and the ope-
rator L2 : B → B defined by x2 = L2f2 is linear and compact. Furthermore,
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x′
1 = a11x1 + f3 for f3 ∈ B has a unique solution (since

∫ τ

0 a11(s)ds �= 0) in B

and x1 = L1f3 defines a linear, compact operator L1: B → B. Then we have

L(f1, f2) ≡ (L1(a12L2f2 + f1), L2f2). (3.6)

(b) If
∫ τ

0 a22(s)ds = 0,
∫ τ

0 a11(s)ds �= 0, then (3.4) has exactly one independent
solution in B × B.

Lemma 3.3. [11]. Suppose a ∈ B and 1
τ

∫ τ

0 a(l)dl = 0. Then x′ = ax + f, f ∈ B,
has a solution x ∈ B if and only if 1

τ

∫ τ

0 a(l)(exp(− ∫ l

0 a(s)ds))dl = 0.

By lemma 3.1, in its invariant manifold s̃ = x(t) + y(t) + z(t), the system
(1.2) reduce to a equivalently nonautonomous system as following

dy

dt
= m1(1 − y − z)y − (1 + εa(t))y − m2yz,

dz

dt
= m2yz − (1 + εa(t))z,

y(0) > 0, z(0) � 0, y(0) + z(0) � s̃(0).

(3.7)

If m1 > 1, for the system (3.7), by theorem 3.1 the boundary periodic solution
(ys(t), 0) is locally asymptotically stable provided with m2 < m∗

2 := m1
m1−1 , and it

is unstable provided with m2 > m∗
2, hence the value m∗

2 practises as a bifurcation
threshold. For the system (3.7), we have the following results.

Theorem 3.2. For the system (3.7), m1 > 1 is hold, then there exists a constance
λ0 > 0, such that for each m2 ∈ (m∗

2, m
∗
2 + λ0), there exists a solution (y, z) ∈

B × B of (3.7) satisfying 0 < y < ys, z > 0, and x = 1 − y − z > 0 for all t > 0.
Hence, the system (1.2) has a positive τ -periodic solution (1 − y − z, y, z).

Proof. Let x1 = y − ys(t), x2 = z in (3.7), then

dx1
dt

= −(2m1ys + εa)x1 − (m1 + m2)ysx2 + g1(x1, x2),

dx2
dt

= (m2ys − 1 − εa)x2 + g2(x1, x2),

(3.8)

where

g1(x1, x2) = −m1x
2
1 − (m1 + m2)x1x2, g2(x1, x2) = m2x1x2.

We know that 1
τ

∫ τ

0 m2ys(l)dl − 1 �= 0, by lemma 3.3, using L we can equi-
valently write the system (3.8) as the operator equation

(x1, x2) = L∗(x1, x2) + G(x1, x2), (3.9)
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where

G(x1, x2) = (L1(−(m1 + m2)ysg2(x1, x2) + g1(x1, x2)), L2g2(x1, x2)).

Here L∗:B × B → B × B is linear and compact and G:B × B → B × B

is continuous and compact (since L1 and L2 are compact) and satisfies G =
o(|(x1, x2)|0) near (0,0). A nontrivial solution (x1, x2) �= (0, 0) for some m2 > 1
yields a solution (y, z) = (ys + x1, x2) of the system (3.7). Solutions (y, z) �=
(ys, 0) will be called nontrivial solutions of system (3.7).

We apply well-known local bifurcation techniques to (3.9). As is well
known, bifurcation can occur only at the nontrivial solution of the linearized
problem

(y1, y2) = L∗(y1, y2), m2 > 0. (3.10)

If (y1, y2) ∈ B × B is a solution of (3.10) for some m2 > 0, then by the very
manner in which L∗ was defined, (y1, y2) solves the system

dy1
dt

= −(2m1ys + εa)y1 − (m1 + m2)ysy2,

dy2
dt

= ((m2ys − 1 − εa)y2

(3.11)

and conversely. Using lemma 3.3 (b), we see that (3.11) and hence (3.10) has one
nontrivial solution in B ×B if and only if 1

τ

∫ τ

0 m∗
2ys(l)dl = 1. Hence there exists

a continuum C = {(m2; x1, x2)} ⊆ (0, ∞) × B × B nontrivial solutions of (3.10)
such that the closure C̄ contains (m∗

2; 0, 0). This continuum gives rise to a conti-
nuum C1 = {(m2; y, z)} ⊆ (0, ∞) × B × B of the solutions of (3.7) whose closure
C̄1 contains the bifurcation point (m∗

2; ys, 0).

To see that solutions in C1 correspond to solutions (y, z) of (3.7), we inves-
tigate the nature of the continuum C near the bifurcation point (m∗

2; 0, 0) by
expending m2 and (x1, x2) in Lyapunov–Schmidt series:

m2 = m∗
2 + λδ + · · · ,

x1 = x11δ + x12δ
2 + · · · ,

x2 = x21δ + x22δ
2 + · · ·

for xij ∈ B where δ is a small parameter. If we substitute these series into the
differential system (3.7) and equate coefficients of δ and δ2 we find that

x′
11 = −(2m1ys + εa)x11 − (m1 + m∗

2)ysx21,

x′
21 = (m∗

2ys − 1 − εa)x21
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and

x′
12 = −(2m1ys + εa)x12 − (m1 + m2)ysx22 + G1(λ, x11, x21),

x′
22 = (m∗

2ys − 1 − εa)x22 + x21(λys + m∗
2x11),

respectively. Thus, (x11, x21) ∈ B ×B must be a solution of (3.10). We choose the
specific solution satisfying the initial conditions x21(0) = 1. Then

x21 = exp(
∫ t

0 (m∗
2ys(l) − 1 − εa(l))dl) > 0.

Moreover x11 < 0 for all t . (This because
∫ τ

0 −2m1ysdl < 0 implies that the
Green’s function for first equation in (3.11) is positive.) Using lemma 3.3 we find
that

λ = −
∫ τ

0 m∗
2x21(l)x11(l) exp(− ∫ l

0 (m∗
2ys(s)−1−εa(s))ds)dl∫ τ

0 x21(l) exp(− ∫ l
0 (m∗

2ys(s)−1−εa(s))ds)dl
> 0.

Thus, we see that near the bifurcation point (m∗
2; 0, 0) (say, for 0 < |m2 − m∗

2| =
λ|ε| < λ0) the continuum C has two (subcontinua) branches corresponding to
ε < 0, ε > 0, respectively:

C+ = {(m2; x1, x2) : m∗
2 < m2 < m∗

2 + λ0, x1 < 0, x2 > 0},
C− = {(m2; x1, x2) : m∗

2 − λ0 < m2 < m∗
2, x1 > 0, x2 < 0}.

The solution is on C+ which prove the theorem, since λ > 0 is equivalent to
m2 > m∗

2. We have left only to show that y = x1 + ys > 0 for all t. This is
easy, for if λ0 is small, then y is near ys in the sup norm of B; thus since ys is
bounded away from zero, so is y. At same time, by theorem 3.1, for the system
(1.2), y is near ys means that x is near xs ; thus x = 1 − y − z > 0. We notice
that the periodic solution (y, z) is continuous τ−periodic. So x = 1 − y − z is
continuous and τ−periodic. We complete the proof.

4. Chemostat chaos

In this section, we will analyze the complexity of the periodic system (1.2).
By theorems 2.1, 3.1, and 3.2, we know that if m1 < 1, the periodic solution
(s̃(t), 0, 0) is globally asymptotically stable; if m1 > 1 and m2 < m∗

2 := m1
m1−1 ,

then the (xs(t), ys(t), 0) is globally asymptotically stable. According to theorem
3.2, if m1 > 1 and m2 > m∗

2 := m1
m1−1 , the predator begins to invade the system.

In the following we apply the forced model equations are

dx

dt
= (1 + ε sin(t))(1 − x) − m1xy,

dy

dt
= m1xy − (1 + ε sin(t))y − m2yz,

dz

dt
= m2yz − (1 + ε sin(t))z.

(4.1)
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Figure 1. (a) (b) Bifurcation diagrams of Poincaré section for the substrate x and predator z in
system (4.1) under m2 = 36, ε = 0.8, and m1 is varied.

We shall numerically integrate equation (4.1) and seek the long-term behavior of
the solutions (after the transients have disappeared).

A traditional approach to gain preliminary insight into the properties of
dynamic system is to carry out a one-dimensional bifurcation analysis. One-
dimensional bifurcation diagrams of Poincaré maps provide information about
the dependence of the dynamics on a certain parameter. The analysis is expected
to reveal the type of attractor to which the dynamics will ultimately settle down
after passing the initial transient phase and within which the trajectory will then
remain forever.

First, we investigate the influence of m2. In system (4.1), set m1 = 3, ε =
0.8, τ = 2π , and we choose m2 ∈ [0.2, 30] as the bifurcation parameter. The
resulting bifurcation diagrams (figure 1) show: the invasion of predator at m∗

2 =
1.5; by using theorem 3.1, when m2 > m∗

2 to be not very large, the system
shows stable period-one cycles [figure 2(a)]; as the parameter m2 increases from
6.55, the period-one behavior bifurcates to a period-two cycles [figure 2(b)], after
which period-doubling bifurcations (figure 2) ensure these culminate in a Fei-
genbaum cascade of period-doubling bifurcations leading to a chaotic region. A
typical chaotic oscillation is captured when m2 = 18.8 (figure 3). The main routs
to chaos are Feigenbaum cascades. This periodic-doubling route to chaos is the
hallmark of the logistic and Ricker maps [12, 13] and has been studied extensi-
vely by Mathematicians [14, 15].

Second, we want to investigate the influence of m1. In system (4.1), set
m2 = 20, ε = 0.8, τ = 2π , and we choose m1 ∈ [0.2, 6] as the bifurcation para-
meter. Figure 2 illustrates the bifurcation diagram of Poincaré map for equation
(4.1). When m1 is small (m1 < 1), the solution (1, 0, 0) is stable. When m1 > 1,
the prey begins invade the system and the solution (xs, ys, 0) is stable if m1 < 20

19 .
When m1 > 20

19 , the predator begins invade and a stable positive period solution
is bifurcated from (xs, ys, 0) if m1 < q0 ≈ 1.23. However, when m1 > q0, the sta-
bility of τ−periodic solution is destroyed and 2τ−periodic solution occurs and
is stable if m1 < q1 ≈ 1.3. When m1 > q2 ≈ 1.33, it is unstable and there is a
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Figure 2. Periodic-doubling bifurcations. In equation (4.1), m1 = 3, ε = 0.8 (a)–(d), are the com-
plete trajectories of τ, 2τ, 4τ , and 8τ -periodic solutions over the time interval from t = 300π to
t = 500π , corresponding with m2 = 5, 10, 13.8 and 15.8.

Figure 3. Strange attractors (chaos) of the flow by equation (4.1). Compare a Poincaré section (b)
with the complete chaotic trajectory (a) (m2 = 18.8). Poincaré points 150–250 are plotted in (b), and
the corresponding complete trajectory over the time interval from t = 300π to 500π are plotted in
(a).
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Figure 4. (a) (b) Bifurcation diagrams of Poincaré section for the substrate x and predator z in
system (4.1) under m2 = 20, ε = 0.8, and m1 ∈ [0.2, 6] is varied.

cascade of period doubling bifurcations leading to chaos. Continuously increa-
sing m1 ≈ 2, the chaotic solution suddenly shrinks to a 2τ -period solution and
further the system shows next doubling bifurcations and follows with a Feigen-
baum cascade of period-doubling bifurcations leading to a chaotic region. When
m2 > 4.63, chaos suddenly shrinks τ−periodic solutions.

Pitchfork bifurcations and tangent (saddle node) bifurcations are abun-
dantly evident in cycles in figures 1 and 4, as well as attractor crises (the phe-
nomenon of “crisis” in which chaotic attractors suddenly appear or disappear,
or change size discontinuously as or change size discontinuously as a parameter
smoothly varies, was first extensively analyzed by Grebogi et al. [16]). For ins-
tance, in figure 4, when m2 is slightly increased beyond m2 = 2 or 4.63, the chao-
tic attractor abruptly disappears, thus constituting a type of crisis.

5. Conclusions

In this paper, we introduce and study a model of Lotka-volterra chemostat
food chain chemostat with periodically varying dilution rate, which contains with
predator, prey, and substrate. First, we find the invasion threshold of the prey,
which is m∗

1 = 1. If m1 < m∗
1, the periodic periodic solution (s̃(t), 0, 0) is globally

asymptotically stable and if m1 > m∗
1, the prey starts to invade the system. Fur-

thermore, by using Floquet theorem and small amplitude perturbation skills, we
have proved that if m1 > m∗

1, there exists m∗
2 = m1

m1−1 to play as the invasion thre-
shold of the predator, that is to say, if m2 < m∗

2 the boundary solution (xs, ys, 0)

is globally asymptotically stable and if m2 > m∗
2 the solution (xs, ys, 0) is uns-

table. By using standard techniques of bifurcation theory, we prove that above
this threshold there are periodic oscillations in substrate, prey, and predator.

Choosing different coefficients m1 and m2 as bifurcation parameters, we
have obtained bifurcation diagrams (figures 1, 4). Bifurcation diagrams have
shown that there exists complexity for system (1.2) including periodic doubling
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cascade. All these results show that dynamical behavior of system (1.2) becomes
more complex with periodically varying dilution rate.
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